Numerical Simulation for Hydrogen-Assisted Cracking: An Explicit Phase-Field Formulation

Author:

Wang Di1,Ma Fangping1,Chen Hao1

Affiliation:

1. Department of Mechanical Engineering, Xinjiang University, Urumqi 830017, China

Abstract

Hydrogen-assisted cracking is one of the most dominant failure modes in metal hydrogen-facing materials. Therefore, the hydrogen-assisted cracking mechanism has been a hot topic for a long time. To date, there is very little published research on numerical methods to describe hydrogen-assisted cracking. This paper presents a new method for the description of hydrogen embrittlement crack growth: an explicit phase-field formulation, which is based on the phase-field description of cracks, Fick’s mass diffusion law, and the relationship between hydrogen content and fracture surface energy. A novel computational framework is then developed using the self-developed FEM software DYNA-WD. We numerically calculate several typical conditions in the 3-D coordinates to validate the effectiveness of the proposed computational framework. Specifically, we discuss (i) the failure of a square plate in a hydrogenous environment, (ii) the CT specimen failed with the inner hydrogen, (iii) the plate/failed with the corrosives, and (iv) the failure of the disk test. Finally, the relationship between Mises stress, the concentration of hydrogen, the thickness of the disc, and the loading rate is investigated.

Funder

Natural Science Foundation of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3