Melt Pool Shape Evaluation by Single-Track Experiments and Finite-Element Thermal Analysis: Balling and Lack of Fusion Criteria for Generating Process Window of Inconel738LC

Author:

Katagiri Jun1ORCID,Kusano Masahiro1ORCID,Minamoto Satoshi2ORCID,Kitano Houichi3ORCID,Daimaru Koyo2,Tsujii Masakazu1,Watanabe Makoto1ORCID

Affiliation:

1. Integrated Smart Materials Group, Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan

2. Materials Integration System Team, Research and Service Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba 305-0044, Japan

3. Welding and Joining Technology Group, Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-0047, Japan

Abstract

Defects occur in laser powder bed fusion (L-PBF) such as the keyholing, lack of fusion, and the balling depending on the laser power (P) and the scan speed (V). The figure shows that the occupied regions of each defect are the process window and are essentially important to fabricate a high-quality part. This paper is a study of process window generation using single-track experiments and finite-element method simulation of thermal conduction for Inconel738LC alloy. A series of single-track experiments were conducted varying the range of P and V and the results were classified into keyholing, lack of fusion, balling, and good track. A series of simulations were conducted and validated by comparison with the experiments. To quantitively identify the balling, the isolines from the contour map generated by the results of simulations and the balling criteria of the ratio of melt pool length and the depth (L/D) of 7.69 were determined considering the past theoretical studies. The lack of fusion criteria: the ratio of the overlap depth in fabrication using multi-scan (Dov) and powder layer thickness (t) of 0.1 was obtained. Using the criteria obtained from the experiments and simulation, the process window was generated.

Funder

the Council for Science, Technology, and Innovation

Cross-ministerial Strategic Innovation Promotion Program

Japan Science and Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3