Hot Corrosion Behavior of TWAS and HVOF NiCr-Based Coatings in Molten Salt

Author:

Lencová Kateřina1,Frank Netrvalová Marie1ORCID,Vostřák Marek1,Lukáč František2ORCID,Mušálek Radek2ORCID,Česánek Zdeněk1,Houdková Šárka1ORCID

Affiliation:

1. Research and Testing Institute Plzen, 30100 Pilsen, Czech Republic

2. Institute of Plasma Physics of CAS, 18200 Prague, Czech Republic

Abstract

In order to extend the life of boilers by applying an anti-corrosion coating without the need to dismantle them, it is advisable to find coatings that can be applied using cheaper and portable techniques, such as Twin Wire Arc Spray technology (TWAS). In this study, we compare selected NiCr-based coatings and two uncoated steel substrates (steel 1.7715 and 1.4903). Two coatings, Cr3C2 - 25% NiCr and Hastelloy C-276 are deposited using High velocity oxygen-fuel technology (HVOF) and three coatings, NiCrTi, NiCrMo, and Inconel 625, are deposited using TWAS. In addition to the corrosion weight gain during 50 cycles of loading in an 18% Na2SO4 and 82% Fe2(SO4)3 salt environment at 690 °C evaluated using the gravimetric method, the microstructure and phase composition of the coatings were analyzed on the samples after the exposure in order to compare the properties and gain a deeper understanding of the corrosion kinetics. Coating cross-sections and free-surfaces were observed with a scanning electron microscope (SEM) with an energy-dispersive (EDX) system. The phase composition was investigated using X-ray diffraction (XRD) and Raman spectroscopy. No significant differences were observed between the TWAS and HVOF coating methods for the coatings compared. Due to the similar corrosion products found on all coatings, a very effective corrosion protective layer was formed on the surface, forming a barrier between the corrosive environment and the coating regardless of the used deposition technology. Therefore, for industrial use on the inner surface of coal-fired boilers we recommend NiCrTi, NiCrMo, or Inconel coatings prepared with the more cost-effective and portable TWAS technology.

Funder

Ministry of Industry and Trade of the Czech Republic

Research and Testing Institute Plzeň

Publisher

MDPI AG

Subject

General Materials Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3