Affiliation:
1. Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Prague 2, Czech Republic
2. Institute of Plasma Physics of the Czech Academy of Sciences, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic
Abstract
A fitting method capable of describing the fatigue crack growth rate (FCGR) data in all stages of crack propagation by a simple Forman-style analytical formula was developed. To demonstrate its robustness, this method was used to quantify the fracture behavior of RF-plasma-sprayed W, Mo, W-Mo composite, and four selected Ni-based tungsten heavy alloys (WHA). The fitted FCGR parameters categorized the studied materials into two distinct sets. W, Mo, and W-Mo composite deposits made from inherently brittle refractory metals that contained a range of defects inherent to plasma spray process represented the first class. This class was characterized by low fracture toughness and a relatively wide range of fatigue crack growth thresholds. The second class of materials was represented by WHA. Here, the deposit defects were suppressed by liquid state diffusion that formed a typical WHA structure consisting of a Ni-rich matrix and large spherical W reinforcement particles. The WHA generally showed higher fatigue crack growth thresholds, but differed in fracture toughness values based on the W particle concentrations. The obtained fracture mechanical data represent a reference dataset of plasma-sprayed refractory materials, and their classification into groups clearly demonstrates the capabilities of the developed method to capture a wide range of different types of FCGR behavior.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献