Longleaf Pine Patch Dynamics Influence Ground-Layer Vegetation in Old-Growth Pine Savanna

Author:

Mugnani ,Robertson ,Miller ,Platt

Abstract

Old-growth longleaf pine savannas are characterized by diverse ground-layer plant communities comprised of graminoids, forbs, and woody plants. These communities co-exist with variable-aged patches containing similar-aged trees of longleaf pine (Pinus palustris Mill.). We tested the conceptual model that physical conditions related to the cycle of longleaf pine regeneration (stand structure, soil attributes, fire effects, and light) influence plant species’ composition and spatial heterogeneity of ground-layer vegetation. We used a chrono-sequence approach in which local patches represented six stages of the regeneration cycle, from open areas without trees (gaps) to trees several centuries old, based on a 40-year population study and increment cores of trees. We measured soil characteristics, patch stand structure, fuel loads and consumption during fires, plant productivity, and ground-layer plant species composition. Patch characteristics (e.g., tree density, basal diameter, soil carbon, and fire heat release) indicated a cyclical pattern that corresponded to the establishment, growth, and mortality of trees over a period of approximately three centuries. We found that plants in the families Fabaceae and Asteraceae and certain genera were significantly associated with a particular patch stage or ranges of patch stages, presumably responding to changes in physical conditions of patches over time. However, whole-community-level analyses did not indicate associations between the patch stage and distinct plant communities. Our study indicates that changes in composition and the structure of pine patches contribute to patterns in spatial and temporal heterogeneity in physical characteristics, fire regimes, and species composition of the ground-layer vegetation in old-growth pine savanna.

Publisher

MDPI AG

Subject

Forestry

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3