Global Identification of Unelectrified Built-Up Areas by Remote Sensing

Author:

Gao XumiaoORCID,Wu MingquanORCID,Niu ZhengORCID,Chen Fang

Abstract

Access to electricity (the proportion of the population with access to electricity) is a key indica for of the United Nations’ Sustainable Development Goal 7 (SDG7), which aims to provide affordable, reliable, sustainable, and modern energy services for all. Accurate and timely global data on access to electricity in all countries is important for the achievement of SDG7. Current survey-based access to electricity datasets suffers from short time spans, slow updates, high acquisition costs, and a lack of location data. Accordingly, a new method for identifying the electrification status of built-up areas based on the remote sensing of nighttime light is proposed in this study. More specifically, the method overlays global built-up area data with night-time light remote sensing data to determine whether built-up areas are electrified based on a threshold night-time light value. By using our approach, electrified and unelectrified built-up areas were extracted at 500 m resolution on a global scale for the years 2014 and 2020. The acquired results show a significant reduction in an unelectrified built-up area between 2014 and 2020, from 51,301.14 km2 to 22,192.52 km2, or from 3.05% to 1.32% of the total built-up area. Compared to 2014, 117 countries or territories had improved access to electricity, and 18 increased their proportion of unelectrified built-up area by >0.1%. The identification accuracy was evaluated by using a random sample of 10,106 points. The accuracies in 2014 and 2020 were 97.29% and 98.9%, respectively, with an average of 98.1%. The outcomes of this method are in high agreement with the spatial distribution of access to electricity data reported by the World Bank. This study is the first to investigate the global electrification of built-up areas by using remote sensing. It makes an important supplement to global data on access to electricity, which can aid in the achievement of SDG7.

Funder

Strategic Priority Research Program of the Chinese Academy of Science

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. United Nations Sustainable Development Summit 2015https://sustainabledevelopment.un.org/post2015/summit

2. Sustainable Development Goals: 17 Goals to Transform Our Worldhttp://www.un.org/sustainabledevelopment/sustainable-development-goals

3. Tracking SDG 7: The Energy Progress Report,2021

4. World Bank Databasehttps://data.worldbank.org.cn/indicator

5. World Energy Outlook 2019,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3