Spatiotemporal Dynamics of Land Surface Albedo and Its Influencing Factors in the Qilian Mountains, Northeastern Tibetan Plateau

Author:

Li Jichun,Pang Guojin,Wang Xuejia,Liu Fei,Zhang Yuting

Abstract

Land surface albedo directly determines the distribution of radiant energy between the surface and the atmosphere, and it is a key parameter affecting the energy balance on the land surface. However, the spatiotemporal dynamics of land surface albedo and associated influencing factors in the Qilian Mountains (QM) have been rarely reported. By using the long-time series data products of MODIS shortwave albedo, normalized difference vegetation index (NDVI), and snow cover with a spatial resolution of 0.05° from 2001 to 2020, this paper analyzes the temporal and spatial variations of land surface albedo in the QM over the past 20 years and its influencing factors. The analysis results show that the multi-year average surface albedo in the QM has obvious differences in spatial distribution: it increases with the altitude, and it is high in the west (at the west of 98° E) and low in the east. Meanwhile, the surface albedo has different distribution characteristics in different seasons: the spatial distribution of surface albedo is similar in spring and autumn; the areas with a high surface albedo in summer are significantly fewer than those in other seasons. Besides, in the past 20 years, the annual average surface albedo has shown a weak growth trend in the QM, with a change rate of 5 × 10−3/10a, and the minimum and maximum values were reached in 2001 and 2019, respectively. In addition, the annual variation of the surface albedo in the QM showed a “U” shape, with the largest variation in January and the smallest variation in August. The annual variation of surface albedo is significantly positively correlated with snow cover (r = 0.96) and significantly negatively correlated with NDVI (r = −0.91). Moreover, the interannual variation of the surface albedo in the QM is closely related to land surface cover and is greatly affected by snow cover. Spatially, the annual variation of surface albedo in most areas of the QM is dominated by the change of snow cover, and the increase of surface albedo in the middle area is consistent with the increase of snow cover, while the decrease of albedo in the edge area is related to the improvement of vegetation cover. The results of this study provide a scientific basis for studying the climate and environmental changes caused by changes in the surface of the QM and making ecological environment restoration strategies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3