A Pre-Operational System Based on the Assimilation of MODIS Aerosol Optical Depth in the MOCAGE Chemical Transport Model

Author:

El Amraoui Laaziz,Plu MatthieuORCID,Guidard VincentORCID,Cornut Flavien,Bacles MickaëlORCID

Abstract

In this study we present a pre-operational forecasting assimilation system of different types of aerosols. This system has been developed within the chemistry-transport model of Météo-France, MOCAGE, and uses the assimilation of the Aerosol Optical Depth (AOD) from MODIS (Moderate Resolution Imaging Spectroradiometer) onboard both Terra and Aqua. It is based on the AOD assimilation system within the MOCAGE model. It operates on a daily basis with a global configuration of 1∘×1∘ (longitude × latitude). The motivation of such a development is the capability to predict and anticipate extreme events and their impacts on the air quality and the aviation safety in the case of a huge volcanic eruption. The validation of the pre-operational system outputs has been done in terms of AOD compared against the global AERONET observations within two complete years (January 2018–December 2019). The comparison between both datasets shows that the correlation between the MODIS assimilated outputs and AERONET over the whole period of study is 0.77, whereas the biases and the RMSE (Root Mean Square Error) are 0.006 and 0.135, respectively. The ability of the pre-operational system to predict extreme events in near real time such as the desert dust transport and the propagation of the biomass burning was tested and evaluated. We particularly presented and documented the desert dust outbreak which occurred over Greece in late March 2018 as well as the wildfire event which happened on Australia between July 2019 and February 2020. We only presented these two events, but globally the assimilation chain has shown that it is capable of predicting desert dust events and biomass burning aerosols which happen all over the globe.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference80 articles.

1. Interannual variability in atmospheric mineral aerosols from a 22-year model simulation and observational data

2. Intergovernmental Panel on Climate Change, Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

3. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)

4. Hygroscopic properties of potassium chloride and its internal mixtures with organic compounds relevant to biomass burning aerosol particles

5. Intergovernmental Panel on Climate Change, Climate Change 2001: The scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,2001

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3