Large-Scale Detection of the Tableland Areas and Erosion-Vulnerable Hotspots on the Chinese Loess Plateau

Author:

Liu KaiORCID,Na JiamingORCID,Fan Chenyu,Huang Ying,Ding HuORCID,Wang Zhe,Tang Guoan,Song ChunqiaoORCID

Abstract

Tableland areas, featured by flat and broad landforms, provide precious land resources for agricultural production and human settlements over the Chinese Loess Plateau (CLP). However, severe gully erosion triggered by extreme rainfall and intense human activities makes tableland areas shrink continuously. Preventing the loss of tableland areas is of real urgency, in which generating its accurate distribution map is the critical prerequisite. However, a plateau-scale inventory of tableland areas is still lacking across the Loess Plateau. This study proposed a large-scale approach for tableland area mapping. The Sentinel-2 imagery was used for the initial delineation based on object-based image analysis and random forest model. Subsequently, the drainage networks extracted from AW3D30 DEM were applied for correcting commission and omission errors based on the law that rivers and streams rarely appear on the tableland areas. The automatic mapping approach performs well, with the overall accuracies over 90% in all four investigated subregions. After the strict quality control by manual inspection, a high-quality inventory of tableland areas at 10 m resolution was generated, demonstrating that the tableland areas occupied 9507.31 km2 across the CLP. Cultivated land is the dominant land-use type on the tableland areas, yet multi-temporal observations indicated that it has decreased by approximately 500 km2 during the year of 2000 to 2020. In contrast, forest and artificial surfaces increased by 57.53% and 73.10%, respectively. Additionally, we detected 455 vulnerable hotspots of the tableland with a width of less than 300 m. Particular attention should be paid to these areas to prevent the potential split of a large tableland, accompanied by damage on roads and buildings. This plateau-scale tableland inventory and erosion-vulnerable hotspots are expected to support the environmental protection policymaking for sustainable development in the CLP region severely threatened by soil erosion and land degradation.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3