Improved Ionosonde Monitoring of the Sporadic E Layer Using the Frequency Domain Interferometry Technique

Author:

Liu Tongxin,Yang Guobin,Zhou ChenORCID,Jiang ChunhuaORCID,Xu Wei,Ni Binbin,Zhao Zhengyu

Abstract

The sporadic E (Es) layer is a thin layer of ion plasma enhancement in the E-region ionosphere, typically at altitudes of 90–120 km with vertical and horizontal extent of several or several tens of kilometers. As the transition region between the lower and upper atmosphere, this layer is of critical importance for ionospheric studies. The most economical but effective method to observe this layer is using ionosonde, which, however, is incapable of capturing the finer structure or the internal inhomogeneity of the Es layer as the range resolution is on the order of kilometers. To overcome this limitation, we employ the frequency domain interferometry (FDI) technique, a technique that has been successfully applied to the analysis of some radar and sonar measurements. Here, we use the Es layer measurements near Wuhan, China (114°22′E, 30°30′N) on 8 June 2021 as examples to showcase the capability of this technique. Our results show that the spatial resolution of ionosonde imaging is remarkably increased: the complexity of the internal fine structure in the Es layer can be well observed in the FDI-processed ionograms, whereas the intrinsic range resolution is several kilometers. Moreover, by comparing the ionograms obtained with and without the FDI technique, it is found that the FDI-processed ionogram is particularly suitable for the observation of evolutional processes in the Es layer, as well as the identification of different types of Es layer. With this level of spatial resolution, ionosonde, in combination with the FDI technique, opens the possibility for more refined observations of the Es layer.

Funder

National Natural Science Foundation of China

Excellent Youth Foundation of Hubei Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3