Range-Ambiguous Clutter Suppression via FDA MIMO Planar Array Radar with Compressed Sensing

Author:

Wang YuzhuoORCID,Zhu Shengqi,Lan Lan,Li Ximin,Liu Zhixin,Wu Zhixia

Abstract

Range-ambiguous clutter is an inevitable issue for airborne forward-looking array radars, especially with the high pulse repetition frequency (PRF). In this paper, a method to suppress the range-ambiguous clutter is proposed in an FDA-MIMO radar with a forward-looking planar array. Compressed sensing FDA technology is used to suppress the range-ambiguous clutter and the forward-looking non-uniformity short-range clutter of radar. Specifically, first, the range ambiguous clutter in different regions is separated by the characteristics of the planar array radar elevation dimension and FDA radar range coupling. Meanwhile, regarding the issue of the FDA radar main lobe moving between coherent pulses, a main lobe correction (MLC) algorithm proposes a solution for the issue, where the FDA radar cannot coherently accumulate signals in the case of non-full angle illumination. Finally, compressed sensing technology and elevation dimension filtering are utilized to suppress the range ambiguous clutter at the receiver, with the approach alleviating the range dependence of clutter in the observation region. A small number of clutter snapshots can obtain an approximately ideal clutter covariance matrix through compressed sensing sparse recovery. The method not only reduces the number of training samples, but also overcomes the problem of clutter non-uniformity in the forward-looking array. Therefore, the clutter suppression problems faced by the high repetition frequency airborne radar forward-looking array structure are solved. At the analysis stage, a comparison among the conventional MIMO and FDA methods is carried on by analyzing the improvement factor (IF) curves. Numerical results verify the effectiveness of the proposed method in range-ambiguous clutter suppression.

Funder

the Innovative Research Group of National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Space-Time Adaptive Processing for Airborne Radar;Ward,1994

2. Principles of Space-Time Adaptive Processing;Klemm,2002

3. Reduced-rank STAP for high PRF radar

4. Doppler compensation in forward-looking STAP radar

5. Registration-based compensation using sparse representation in conformal-array STAP

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3