New Chung-Li Ionosonde in Taiwan: System Description and Preliminary Results

Author:

Ke Kai-Jun,Su Ching-Lun,Kuong Ruey-Ming,Chen Hsyang-Chan,Lin Hung-Shi,Chiu Po-Hsun,Ko Ching-Yuan,Chu Yen-HsyangORCID

Abstract

In spite of being interrupted several times in its long history of operation since 1950, the routine observation of the ionosphere with various ionosondes installed at the Chung-Li ionosphere station in Taiwan has been achieved successively for more than seven decades. In this article, the system characteristics of the latest Chung-Li ionosonde and algorithm developed by National Central University for ionogram scaling and true height analysis, which started to routinely operate in 2020, are introduced. The new Chung-Li ionosonde is a pulse radar that transmits a train of short pulses with respective carrier frequencies between 2 and 30 MHz at a frequency separation of 50 kHz. The duration of an entire frequency sweep is 294.13 s, which is divided into 561 frequency channels. The 16-bit complementary code is employed to increase the signal-to-noise of the reflected echoes. The observational range is from 70 to 1221 km with a range resolution of 3.84 km. We developed an algorithm for the Chung-Li ionosonde to automatically scale the ionogram such that the true height profile of the ionospheric electron density can be retrieved. The observed traces of the ordinary wave (O-wave) and extraordinary wave (X-wave) displayed on the ionogram were first identified and separated by using 2-dimensional autocorrelation analysis combined with the image projection method. The true height analysis used stepwise regression. With the help of the International Reference Ionosphere (IRI) model and Quasi-Parabolic Segment (QPS) model, we carried out true height analysis to retrieve the ionospheric electron density profile based on the O-wave trace. An examination showed that the ionospheric parameters (i.e., foF2, h’F2) retrieved from the automatic scaling algorithm were essentially in good agreement with those obtained from manual scaling. The ionosonde-measured foF2 and hmF2 were also compared with the FORMOSAT-7 measurements made with the GPS radio occultation technique. The results show that the correlation coefficient, root mean squared deviation, and mean difference were, respectively, in ranges from 0.878 to 0.93, 0.73 to 1.06 MHz, and −0.43 to −0.26 MHz for foF2 and in ranges from 0.701 to 0.8, 22.39 to 28.45 km, and −9.28 to 11.06 km for hmF2.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3