Design and Fabrication of New High Entropy Alloys for Evaluating Titanium Replacements in Additive Manufacturing

Author:

Sarswat Prashant,Smith Taylor,Sarkar Sayan,Murali ArunORCID,Free Michael

Abstract

High entropy alloys (HEAs) were prepared using the powder bed fusion (PBF) technique. Among titanium free alloys AlCoCrFeNiMn, CoCr1.3FeMnNi0.7, AlCoCrFeNi1.3, and AlCoCr1.3FeNi1.3 have been further investigated. A cost comparison was done for these four alloys as well as the titanium-based alloys AlCoCrFeNiTi and AlCo0.8CrFeNiTi. Such a comparison was done in order to evaluate the performance of the titanium-free alloys as the estimated cost of these will be less than for Ti-based HEAs. Hence, we have chosen four titanium free alloys and two titanium-based alloys for further processing. All these alloys were fabricated and subsequently characterized for phase, purity and performance. Scanning electron microscopy-based images were captured for microstructure characterization. EIS-based tests and potentiodynamic scans were performed to evaluate corrosion current. Hardness tests were performed for mechanical properties evaluation. Additional testing using factorial design tests was performed to evaluate the effects of various parameters to create better PBF-based HEA samples. EBSD tests, accelerated corrosion tests (mass loss), chemical analysis after degradation, microstructure analysis before and after degradation, and mechanical property comparison for finalized samples and other similar tests were executed. The details about all these HEAs and subsequent laser processing as well as behavior of these HEAs have been included in this study. It has been observed that some of the selected alloys exhibit good performance compared to Ti-based alloys, especially with respect to improvements in elastic constant and hardness relative to commercially pure Ti.

Funder

Naval Air Systems Command

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3