Enhancement of Gas Barrier Properties of Graphene Oxide/Poly (Lactic Acid) Films Using a Solvent-free Method

Author:

Li Fenfen,Zhang CailiORCID,Weng YunxuanORCID,Diao Xiaoqian,Zhou Yingxin,Song Xinyu

Abstract

Graphene oxide(GO)/polylactic acid (PLA) nanocomposite, prepared using a solvent-free melt mixing processing, is investigated as a potential oxygen barrier packaging film in this work. In order to disperse GO homogeneously in PLA matrix, hydrophobic silane coupling agent, i.e., γ-(2,3-epoxypropoxy)propyltrimethoxysilane (KH560), is used to modify the graphene oxide sheets. The modified GO is able to be well bonded to the PLA due to the formation of covalent bonds between the epoxy groups of KH560 and the carboxyl and hydroxyl terminal groups of PLA. Furthermore, the thermal stability of GO is enhanced due to the long alkyl side chain of KH560, which could also increase the crystallinity of PLA. As a result, the crystallinity of PLA is significantly improved because of the linear KH560 chains, which can act as nucleating agents to improve the crystallization. The KH560-GO helps to reduce the O2 permeability of KH560-GO/PLA composite films via a dual-action mechanism: (1) providing physical barrier due to their native barrier properties, and (2) by resulting in higher degree of crystallinity. The as-prepared KH560-GO0.75/PLA is able to exhibit ca. 33% and ca. 13% decrease in the PO2 than the neat PLA and GO0.75/PLA film, respectively. Finally, the mechanical properties and impact fractured surfaces indicate that the increase in the tensile strength and elongation at break value of KH560-GO/PLA are due to the strong interfacial adhesion and the strong bonding between the epoxy group of KH560-GO and hydroxyl and carboxyl acid terminal groups of PLA matrix.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3