PVA-Based Nanofibers Containing Chitosan Modified with Graphene Oxide and Carbon Quantum Dot-Doped TiO2 Enhance Wound Healing in a Rat Model

Author:

Norouzi Fatemeh,Pourmadadi MehrabORCID,Yazdian Fatemeh,Khoshmaram Keyvan,Mohammadnejad Javad,Sanati Mohammad Hossein,Chogan FarazORCID,Rahdar AbbasORCID,Baino FrancescoORCID

Abstract

Electrospun nanofibrous constructs based on nanoparticles and biopolymers have recently been used in tissue engineering because of their similarity to the extracellular matrix in nature. In this study, electrospun chitosan-carbon quantum dot-titanium dioxide-graphene oxide (CS-CQD-TiO2-GO) nanofibrous mats were synthesized for use as wound dressings by the electrospinning method. To increase the biodegradation rate and water resistance, the fabricated nanofibrous mats were cross-linked. SEM images showed a uniform and coherent structure of CS-CQD-TiO2-GO nanocomposites and CS-CQD-TiO2-GO electrospun nanofibers mats. FTIR analysis, XRD pattern, SEM mapping, and EDS spectrum demonstrate the accuracy of the synthesis as well as the elemental and chemical structure of the nanofibrous mat. The water contact angle indicated that the nanofibrous mat had a hydrophilic property, which is essential for controlling wound exudates. The tensile strength and elongation tests showed that the nanofibrous mat has suitable mechanical properties for wound dressing, including significant flexibility and strength. Interestingly, antimicrobial testing illustrated that the fabricated nanofibrous mat had antibacterial activity against Gram-negative and Gram-positive bacteria. Appropriate cell viability and cytocompatibility of treated mouse fibroblast NIH3T3 cells with the nanofibrous mat were determined using an MTT assay. The animal study results confirmed the proper potential of the nanofibrous mat in wound dressing applications.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3