PEGylated Strontium Sulfite Nanoparticles with Spontaneously Formed Surface-Embedded Protein Corona Restrict Off-Target Distribution and Accelerate Breast Tumour-Selective Delivery of siRNA

Author:

Karim Md. EmranulORCID,Chowdhury Ezharul Hoque

Abstract

As transporters of RNAi therapeutics in preclinical and clinical studies, the application of nanoparticles is often hindered by their susceptibility to opsonin-mediated clearance, poor biological stability, ineffectual targeting, and undesirable effects on healthy cells. Prolonging the blood circulation time while minimizing the off-target distribution and associated toxicity is indispensable for the establishment of a clinically viable delivery system for therapeutic small interfering RNAs (siRNAs). Herein, we report a scalable and straightforward approach to fabricate non-toxic and biodegradable pH-responsive strontium sulfite nanoparticles (SSNs) wrapped with a hydrophilic coating material, biotinylated PEG to lessen unforeseen biological interactions. Surface functionalization of SSNs with PEG led to the generation of small and uniformly distributed particles with a significant affinity towards siRNAs and augmented internalization into breast cancer cells. A triple quadrupole liquid chromatography-mass spectrometry (LC-MS) was deployed to identify the proteins entrapped onto the SSNs, with the help of SwissProt.Mus_musculus database. The results demonstrated the reduction of opsonin proteins adsorption owing to the stealth effect of PEG. The distribution of PEGylated SSNs in mice after 4 h and 24 h of intravenous administration in breast tumour-bearing mice was found to be significantly less to the organs of the reticuloendothelial system (RES) and augmented accumulation in the tumour region. The anti-EGFR siRNA-loaded PEG-SSNs exerted a significant inhibitory effect on tumour development in the murine breast cancer model without any significant toxicity to healthy tissues. Therefore, PEGylated SSNs open up a new avenue for tumour-selective efficient delivery of siRNAs in managing breast cancer.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3