Surface Heparinization of a Magnesium-Based Alloy: A Comparison Study of Aminopropyltriethoxysilane (APTES) and Polyamidoamine (PAMAM) Dendrimers

Author:

Ebrahimi MasoumehORCID,Solouk AtefehORCID,Davoodi AliORCID,Akbari SomayeORCID,Nazarpak Masoumeh HaghbinORCID,Nouri Alireza

Abstract

Magnesium (Mg)-based alloys are biodegradable metallic biomaterials that show promise in minimizing the risks of permanent metallic implants. However, their clinical applications are restricted due to their rapid in vivo degradation and low surface hemocompatibilities. Surface modifications are critically important for controlling the corrosion rates of Mg-based alloys and improving their hemocompatibilities. In the present study, two heparinization methods were developed to simultaneously increase the corrosion resistance and hemocompatibility of the AZ31 Mg alloy. In the first method, the surface of the AZ31 alloy was modified by alkali–heat treatment and then aminolyzed by 3-amino propyltriethoxy silane (APTES), a self-assembly molecule, and heparin was grafted onto the aminolyzed surface. In the second method, before heparinization, polyamidoamine dendrimers (PAMAM4-4) were grafted onto the aminolyzed surface with APTES to increase the number of surface functional groups, and heparinization was subsequently performed. The presence of a peak with a wavelength of about 1560 cm−1 in the FTIR spectrum for the sample modified with APTES and dendrimers indicated aminolysis of the surface. The results indicated that the corrosion resistance of the Mg alloy was significantly improved as a result of the formation of a passive layer following the alkali–heat treatment. The results obtained from a potentiodynamic polarization (PDP) test showed that the corrosion current in the uncoated sample decreased from 25 µA to 3.7 µA in the alkali–heat-treated sample. The corrosion current density was reduced by 14 and 50 times in samples treated with the self-assembly molecules, APTES and dendrimers, respectively. After heparinization, the clotting time for pristine Mg was greatly improved. Clotting time increased from 480 s for the pristine Mg sample to 630 s for the APTES- and heparin-modified samples and to 715 s for the PAMAM- and heparin-modified samples. Cell culture data showed a slight improvement in the cell-supporting behavior of the modified samples.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3