Fracture and Fatigue of Dental Implants Fixtures and Abutments with a Novel Internal Connection Design: An In Vitro Pilot Study Comparing Three Different Dental Implant Systems

Author:

On Sung-WoonORCID,Yi Sang-MinORCID,Park In-Young,Byun Soo-HwanORCID,Yang Byoung-EunORCID

Abstract

The aim of this study was to compare the mechanical behaviors of three dental implant fixtures with different abutment connection designs. Three implant systems were studied: the control (BLX implant), test group 1 (TORX++ implant), and test group 2 (IU implant). Three samples from each group were subjected to static compression to fracture tests to determine the maximum fracture load, and twelve samples were exposed to fatigue tests that measured how many cycles the implants could endure before deformation or fracture. Detailed images of the implant–abutment assemblies were obtained using micro-computed tomography imaging, and fractured or deformed areas were observed using a scanning electron microscope (SEM). The mean maximum breaking loads of 578.45 ± 42.46 N, 793.26 ± 57.43 N, and 862.30 ± 74.25 N were obtained for the BLX, TORX++, and IU implants, respectively. All samples in the three groups withstood 5 × 106 cycles at 50% of the nominal peak value, and different fracture points were observed. All abutment connection designs showed suitable mechanical properties for intraoral use. Microscopic differences in the fracture patterns may be due to the differences in the fixture design or abutment connection, and mechanical complications could be prevented by lowering the overload reaching the implant or preventing peri-implantitis.

Funder

Korea Health Technology R&D Project through the Korea Health Industry Development Institute

Ministry of Health & Welfare

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3