A Rapid Deployment Mechanism of Forwarding Rules for Reactive Mode SDN Networks

Author:

Kao Ming-TsungORCID,Kao Shang-Juh,Tseng Hsueh-Wen,Chang Fu-Min

Abstract

In reactive mode software-defined networking (SDN) networks, a new initiated flow requires back-and-forth communications between the controller and the switches along the forwarding route. As SDN is getting popularly accepted, many studies have reported on how to reduce the amount of communication traffic and to release the controller’s loading. Several techniques have been proposed, such as proactive and active mode integration, MPLS adoption, and various forwarding rule installation techniques. In this paper, we adopt the idea of the tunnel penetration technique, called the tunnel boring machine in SDN or SDN-TBM, to effectively cut down the traffic between switches and the controller as well as to speed up packet delivery. Using the TBM mechanism, the communication symmetry between the controller and the switches on the path is broken and transformed into asymmetry. Only the first and last switches of each application flow need to make forwarding queries to the controller, and all intermediate switches simply forward packets consisting of the forwarding information needed to determine the next-hop switch. An M/M/1 queueing model is developed to verify the feasibility and efficiency of the proposal. Under the simulation of more than a million flows with 3–8 intermediate switches, the packet sojourn time using SDN-TBM mechanism is less than that of adopting the conventional SDN and JumpFlow model. Additionally, by adopting SDN-TBM, both the number of packet-in and packet-out packets and the controller’s loading are significantly reduced.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3