Abstract
Ever since the World Health Organization gave the name COVID-19 to the coronavirus pneumonia disease, much of the world has been severely impact by the pandemic socially and economically. In this paper, the mathematical modeling and stability analyses in terms of the susceptible–exposed–infected–removed (SEIR) model with a nonlinear incidence rate, along with media interaction effects, are presented. The sliding mode control methodology is used to design a robust closed loop control of the epidemiological system, where the property of symmetry in the Lyapunov function plays a vital role in achieving the global asymptotic stability in the output. Two policies are considered: the first considers only the governmental interaction, the second considers only the vaccination policy. Numerical simulations of the control algorithms are then evaluated.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)