Abstract
The property of dark matter remains to date unknown. However, a model-independent classification of dark matter candidates can be achieved by using various symmetries, as performed in the standard model. Fermionic dark matter has been extensively researched, and one favored candidate is the neutralino in the Minimal Supersymmetric Standard Model, which is required by fermion–boson symmetry and the preservation of R-parity. Bosonic dark matter has not been sufficiently studied, especially the scenario of dark matter with a mass of sub-GeV. In this paper, we consider the effect of spin-dependent (SD) on scalar and vector dark matter, which are mediated by pseudoscalar and axial-vector, and evaluate the effect on the dark matter–electron scattering cross-section. We list all the interactions and form factor of dark matter–electron SD scattering, and use XENON10/100/1T experiment data to derive the exclusion limit of the SD cross-section. We find that the SD scattering of scalar and vector dark matter can be three orders of magnitude stronger than spin-independent (SI) scattering due to the p-wave scattering.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference47 articles.
1. A survey of dark matter and related topics in cosmology
2. Non-relativistic effective theory of dark matter direct detection
3. A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter;Agrawal;arXiv,2010
4. Dark matter models with uniquely spin-dependent detection possibilities
5. Model Independent Direct Detection Analyses;Fitzpatrick;arXiv,2012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献