Abstract
Distributed generators and microgrids are of great importance for the stable operation of power systems when failures occur. The major work of this paper is proposing an optimal topological design model of preset connection lines, aiming at a distributed power generation network based on different nodal invulnerability requirements. Moreover, the important innovation of this paper lies in that the perspective is shifted from the system to an individual node of a different type. When a node malfunction occurs, the faulty node can be connected to its neighbor nodes by closing a switch to achieve energy exchange. The distributed generation network consists of a series of nodes that can realize self-sufficiency and can be classified into three types with different levels of importance according to their tasks. The nodes of different types must meet different requirements of destructibility. In this paper, a mixed-integer linear programming model is formulated to solve the optimal topology design problem. In addition, this paper also analyzes the influence of changing nodal power generation capacity and nodal type, and the simulation results show the practicability of the proposal.
Funder
the National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献