Abstract
In recent years, the volume of spatial data has rapidly grown, so it is crucial to process them in an efficient manner. The level of parallel processing in big data platforms such as Hadoop and Spark is determined by partitioning the dataset. A common approach is to split the data into chunks based on the number of bytes. While this approach works well for text-based batch processing, in many cases, it is preferable to take advantage of the structured information contained in the dataset (e.g., spatial coordinates) to plan data partitioning. In view of the huge amount of data and the impossibility of quickly establishing partitions, this paper designs a method for approximate partition boundary solving, which divides the data space into multiple non-overlapping symmetric bins and samples each bin, making the probability density of the sampling set bounded by the deviation of the probability density of the original data. The sampling set is read into the memory at one time for calculation, and the established partition boundary satisfies the partition threshold-setting. Only a few boundary adjustment operations are required, which greatly shortens the partition time. In this paper, the method proposed in the paper is tested on the synthetic dataset, the bus trajectory dataset, and six common spatial partitioning methods (Grid, Z-curve, H-curve, STR, Kd-tree, and R*-Grove) are selected for comparison. The results show that the symmetric bin sampling method can describe the spatial data distribution well and can be directly used for partition boundary division.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Shipping Joint Fund of Department of Science and Technology of Liaoning
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)