An External Energy Independent WO3/MoCl5 Nano-Sized Catalyst for the Superior Degradation of Crystal Violet and Rhodamine B Dye

Author:

Kim Dongin,Kim Geonwoo,Bae Hyeonbin,Kim Eunwoo,Moon Byunghyun,Cheon Daho,Tarte NareshORCID

Abstract

In this study, the synthesis of a novel catalyst WO3/MoCl5 was carried out by the thermal method. The method gave an entirely different product compared to previous studies that doped Mo on the surface of semiconductor metal oxides. The degradation reaction of crystal violet (CV) and rhodamine B (RB) dye were done without any energy source. The results showed an incomparably superior result for degradation, with a reaction rate constant of 1.74 s−1 for 30 ppm CV, 1.08 s−1 for 30 ppm RB, and a higher value than 1 s−1 for both cases of 50 ppm dye solution. To the author’s knowledge, this catalyst has the highest reaction rate compared to other studies that targeted CV and RB, with an immense reaction rate increase of more than 100 times. Reusability of the three trials was verified, and the only process required was washing the catalyst after the reaction. One of the drawbacks of the advanced oxidation process (AOP), which has a degradation percent limit, has been solved, since 100% mineralization of the dye was available using this catalyst. FT-IR spectroscopy revealed that W-O-Mo linkage was successfully processed while Mo-Cl linkage has retained. 1H-NMR spectroscopy results confirmed that the degradation product of the dye treated by simple MoCl5 and WO3/MoCl5 was different. Deep inspection of specific regions of NMR fields gave necessary information about the degradation product using WO3/MoCl5.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3