Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase

Author:

Li Ze-Jun1,Wang Cai-Yun1,Xu Liang1,Zhang Zhen-Yu1,Tang Ying-Hao1,Qin Tian-Yi12ORCID,Wang Ya-Long12

Affiliation:

1. Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China

2. One Health Institute, Hainan University, Haikou 570228, China

Abstract

Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Hainan Provincial Natural Science Foundation of China

Open Project Program of Wuhan National Laboratory for Optoelectronics

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3