Feather-like Gold Nanostructures Anchored onto 3D Mesoporous Laser-Scribed Graphene: A Highly Sensitive Platform for Enzymeless Glucose Electrochemical Detection in Neutral Media

Author:

Berni Achraf12,Amine Aziz1,García-Guzmán Juan José2,Cubillana-Aguilera Laura2ORCID,Palacios-Santander José María2ORCID

Affiliation:

1. Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, P.A. 149, Mohammedia 28810, Morocco

2. Department of Analytical Chemistry, Institute of Research on Electron Microscopy and Materials (IMEYMAT), Faculty of Sciences, Campus de Excelencia Internacional del Mar (CEIMAR), University of Cadiz, Campus Universitario de Puerto Real, Polígono del Río San Pedro S/N, 11510 Puerto Real, Cádiz, Spain

Abstract

The authors present a novel sensing platform for a disposable electrochemical, non-enzymatic glucose sensor strip at physiological pH. The sensing material is based on dendritic gold nanostructures (AuNs) resembling feather branches, which are electrodeposited onto a laser-scribed 3D graphene electrode (LSGE). The LSGEs were fabricated via a one-step laser scribing process on a commercially available polyimide sheet. This study investigates several parameters that influence the morphology of the deposited Au nanostructures and the catalytic activity toward glucose electro-oxidation. The electrocatalytic activity of the AuNs-LSGE was evaluated using cyclic voltammetry (CV), linear sweep voltammetry (LSV), and amperometry and was compared to commercially available carbon electrodes prepared under the same electrodeposition conditions. The sensor demonstrated good stability and high selectivity of the amperometric response in the presence of interfering agents, such as ascorbic acid, when a Nafion membrane was applied over the electrode surface. The proposed sensing strategy offers a wide linear detection range, from 0.5 to 20 mM, which covers normal and elevated levels of glucose in the blood, with a detection limit of 0.21 mM. The AuNs-LSGE platform exhibits great potential for use as a disposable glucose sensor strip for point-of-care applications, including self-monitoring and food management. Its non-enzymatic features reduce dependence on enzymes, making it suitable for practical and cost-effective biosensing solutions.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3