Environment-Aware Rate Adaptation Based on Occasional Request and Robust Adjustment in 802.11 Networks

Author:

Yu Weijie1,Wang Li1,Song Jin1,He Lijun12,Wang Yanting1

Affiliation:

1. School of Software, Northwestern Polytechnical University, Xi’an 710072, China

2. Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China

Abstract

The IEEE 802.11 standard provides multi-rate support for different versions. As there is no specification on the dynamic strategy to adjust the rate, different rate adaptation algorithms are applied according to different manufacturers. Therefore, it is often hard to interpret the performance discrepancy of various devices. Moreover, the ever-changing channels always challenge the rate adaptation, especially in the scenario with scarce spectrum and low SNR. As a result, it is important to sense the radio environment cognitively and reduce the unnecessary oscillation of the transmission rate. In this paper, we propose an environment-aware robust (EAR) algorithm. This algorithm employs an occasional small packet, designs a rate scheme adaptive to the environment, and enhances the robustness. We verify the throughput of EAR using network simulator NS-3 in terms of station number, motion speed and node distance. We also compare the proposed algorithm with three benchmark methods: AARF, RBAR and CHARM. Simulation results demonstrate that EAR outperforms other algorithms in several wireless environments, greatly improving the system robustness and throughput.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Basic Research Programs of Taicang

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3