DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System

Author:

Mao Yingchi,Zhang Jianhua,Qi Hai,Wang Longbao

Abstract

Many sensor nodes have been widely deployed in the physical world to gather various environmental information, such as water quality, earthquake, and huge dam safety. Due to the limitation in the batter power, memory, and computational capacity, missing data can occur at arbitrary sensor nodes and time slots. In extreme situations, some sensors may lose readings at consecutive time slots. The successive missing data takes the side effects on the accuracy of real-time monitoring as well as the performance on the data analysis in the wireless sensor networks. Unfortunately, existing solutions to the missing data filling cannot well uncover the complex non-linear spatial and temporal relations. To address these problems, a DNN (Deep Neural Network) multi-view learning method (DNN-MVL) is proposed to fill the successive missing readings. DNN-MVL mainly considers five views: global spatial view, global temporal view, local spatial view, local temporal view, and semantic view. These five views are modeled with inverse distance of weight interpolation, bidirectional simple exponential smoothing, user-based collaborative filtering, mass diffusion-based collaborative filtering with the bipartite graph, and structural embedding, respectively. The results of the five views are aggregated to a final value in a multi-view learning algorithm with DNN model to obtain the final filling readings. Experiments on large-scale real dam deformation data demonstrate that DNN-MVL has a mean absolute error about 6.5%, and mean relative error 21.4%, and mean square error 8.17% for dam deformation data, outperforming all of the baseline methods.

Funder

National Key Technology Research and Development Program of the Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

1. A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks;Shen;J. Internet Technol.,2015

2. Multisource information fusion-based approach diagnosing structural behavior of dam engineering

3. Contamination Event Detection with Multivariate Time-Series Data in Agricultural Water Monitoring

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3