Kinetics and Thermodynamics Studies for Cadmium (II) Adsorption onto Functionalized Chitosan with Hexa-Decyl-Trimethyl-Ammonium Chloride

Author:

Ardean Cristina,Ciopec Mihaela,Davidescu Corneliu MirceaORCID,Negrea Petru,Voda Raluca

Abstract

A new adsorbent material was obtained by functionalization of chitosan with hexa-decyl-trimethyl-ammonium chloride and tested as an adsorbent for Cd(II) ions. Functionalization is due to the desire to improve the adsorbent properties of the biopolymer used for removal of metallic ions. Obtained material was characterized by FTIR (Fourier Transform InfraRed spectroscopy), SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray Spectroscopy). To prove the Cd(II) adsorption mechanism, we performed adsorption tests determining influence of biopolymer ratio, pH, contact time, temperature and Cd(II) initial concentration. Obtained experimental data were modeled using two kinetics models: pseudo-first-order and pseudo-second-order models. Cd(II) adsorption kinetics was better described by pseudo-second-order model. Further, experimental data were fitted using three different adsorption isotherms: Langmuir, Freundlich and Sips. The studied adsorption process is well described by the Sips adsorption isotherm, when the maximum adsorption capacity value is near the experimental one. Likewise, we evaluated the values of thermodynamic parameters which indicate that the studied process is an endothermic and spontaneous one, being a physical adsorption. Prepared adsorbent materials have a maximum adsorption capacity of 204.3 mg Cd2+ per gram at pH > 4.0 and 298 K. In addition, this material was reused for Cd2+ recovery for 20 times.

Publisher

MDPI AG

Subject

General Materials Science

Reference48 articles.

1. Cadmium toxicity and treatment: An update;Rafati-Rahimzadeh;Casp. J. Intern. Med.,2017

2. Toxicology of Cadmium, in Toxicology of Metals: Biochemical Aspects;Goering,1995

3. The toxicity of cadmium and resulting hazards for human health

4. Cadmium and Its Neurotoxic Effects

5. Cadmium carcinogenesis in review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3