Degradation of Contaminants of Emerging Concern by Electrochemical Oxidation: Coupling of Ultraviolet and Ultrasound Radiations

Author:

Martín de Vidales María J.,Rua Jaime,Montero de Juan José Luis,Fernández-Martínez FranciscoORCID,Dos santos-García Antonio J.ORCID

Abstract

In this work, we study the electrochemical oxidation of methyl red, a dye present in textile industrial effluents, which is selected as the model for the degradation of Contaminants of Emerging Concern. The influence of the initial pollutant concentration (1–5 mg dm−3), applied current density (2–15 mA cm−2), and the coupling of ultraviolet or ultrasound radiation have been studied using a titanium plate as anode. The results show that electrochemical oxidation is able to efficiently remove methyl red, and the process efficiency decreases with the initial pollutant concentration. At high applied current densities, efficiency drastically decreases due to a less effective mass transfer of the pollutant on the anodic surface. On one hand, the coupling of ultrasound entails an antagonistic effect on the process efficiency, which is probably due to a massive formation of oxidant radicals followed by a fast recombination process. On the other hand, the coupling of ultraviolet radiation increases the process efficiency. Concomitantly to the oxidation processes, titanium electrode produces rising TiO2–anatase nanoparticles, boosting the mineralization process. This new finding sets up a significant improvement over conventional photocatalysis treatments using TiO2–anatase as a catalyst due to synergistic effects coming from the coupling of the electrochemical oxidation and photocatalysis process with Ti anode.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3