Duplicating Freshwater Productivity of Adsorption Desalination System Using Aluminum Metal Filings

Author:

Alhumade HeshamORCID,Askalany Ahmed,Rezk HegazyORCID,Al-Zahrani Abdulrahim A.,Zaman Sharif F.

Abstract

In this paper, improving the overall heat transfer coefficient by adding aluminum species to silica gel has been studied theoretically. An adsorption desalination system is proposed, and a lumped theoretical model conducted to investigate employing the metal additives within the adsorbent bed with and without a heat recovery between condenser and evaporator. A 30% of the total mass of the adsorbent bed contents was considered to be replaced by aluminum species. According to this, the overall heat transfer coefficient has been increased by 260%, which shows a good impact on the performance of the adsorption system. Daily water productivity was increased by 70% at the worst-case, reaching up to 17 m3/day/ton of silica gel without heat recovery. By employing heat recovery with the metal filing, the daily water productivity reached 42 m3/day/ton of silica gel which is four times the productivity of the classic silica gel-based adsorption desalination system.

Funder

Ministry of Education and King Abdulaziz University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3