Comparison of Point Cloud Registration Techniques on Scanned Physical Objects

Author:

Denayer Menthy12ORCID,De Winter Joris12ORCID,Bernardes Evandro12ORCID,Vanderborght Bram13ORCID,Verstraten Tom12ORCID

Affiliation:

1. Robotics & Multibody Mechanics Group, Vrije Universiteit Brussel, Pleinlaan 9, 1050 Brussels, Belgium

2. Flanders Make, Pleinlaan 9, 1050 Brussels, Belgium

3. IMEC, Pleinlaan 9, 1050 Brussels, Belgium

Abstract

This paper presents a comparative analysis of six prominent registration techniques for solving CAD model alignment problems. Unlike the typical approach of assessing registration algorithms with synthetic datasets, our study utilizes point clouds generated from the Cranfield benchmark. Point clouds are sampled from existing CAD models and 3D scans of physical objects, introducing real-world complexities such as noise and outliers. The acquired point cloud scans, including ground-truth transformations, are made publicly available. This dataset includes several cleaned-up scans of nine 3D-printed objects. Our main contribution lies in assessing the performance of three classical (GO-ICP, RANSAC, FGR) and three learning-based (PointNetLK, RPMNet, ROPNet) methods on real-world scans, using a wide range of metrics. These include recall, accuracy and computation time. Our comparison shows a high accuracy for GO-ICP, as well as PointNetLK, RANSAC and RPMNet combined with ICP refinement. However, apart from GO-ICP, all methods show a significant number of failure cases when applied to scans containing more noise or requiring larger transformations. FGR and RANSAC are among the quickest methods, while GO-ICP takes several seconds to solve. Finally, while learning-based methods demonstrate good performance and low computation times, they have difficulties in training and generalizing. Our results can aid novice researchers in the field in selecting a suitable registration method for their application, based on quantitative metrics. Furthermore, our code can be used by others to evaluate novel methods.

Funder

Flanders Make SBO project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3