Abstract
Edge computing (EC) has recently emerged as a promising paradigm that supports resource-hungry Internet of Things (IoT) applications with low latency services at the network edge. However, the limited capacity of computing resources at the edge server poses great challenges for scheduling application tasks. In this paper, a task scheduling problem is studied in the EC scenario, and multiple tasks are scheduled to virtual machines (VMs) configured at the edge server by maximizing the long-term task satisfaction degree (LTSD). The problem is formulated as a Markov decision process (MDP) for which the state, action, state transition, and reward are designed. We leverage deep reinforcement learning (DRL) to solve both time scheduling (i.e., the task execution order) and resource allocation (i.e., which VM the task is assigned to), considering the diversity of the tasks and the heterogeneity of available resources. A policy-based REINFORCE algorithm is proposed for the task scheduling problem, and a fully-connected neural network (FCN) is utilized to extract the features. Simulation results show that the proposed DRL-based task scheduling algorithm outperforms the existing methods in the literature in terms of the average task satisfaction degree and success ratio.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献