Monophonic and Polyphonic Wheezing Classification Based on Constrained Low-Rank Non-Negative Matrix Factorization

Author:

De La Torre Cruz JuanORCID,Cañadas Quesada Francisco JesúsORCID,Ruiz Reyes NicolásORCID,García Galán SebastiánORCID,Carabias Orti Julio JoséORCID,Peréz Chica GerardoORCID

Abstract

The appearance of wheezing sounds is widely considered by physicians as a key indicator to detect early pulmonary disorders or even the severity associated with respiratory diseases, as occurs in the case of asthma and chronic obstructive pulmonary disease. From a physician’s point of view, monophonic and polyphonic wheezing classification is still a challenging topic in biomedical signal processing since both types of wheezes are sinusoidal in nature. Unlike most of the classification algorithms in which interference caused by normal respiratory sounds is not addressed in depth, our first contribution proposes a novel Constrained Low-Rank Non-negative Matrix Factorization (CL-RNMF) approach, never applied to classification of wheezing as far as the authors’ knowledge, which incorporates several constraints (sparseness and smoothness) and a low-rank configuration to extract the wheezing spectral content, minimizing the acoustic interference from normal respiratory sounds. The second contribution automatically analyzes the harmonic structure of the energy distribution associated with the estimated wheezing spectrogram to classify the type of wheezing. Experimental results report that: (i) the proposed method outperforms the most recent and relevant state-of-the-art wheezing classification method by approximately 8% in accuracy; (ii) unlike state-of-the-art methods based on classifiers, the proposed method uses an unsupervised approach that does not require any training.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference88 articles.

1. Chronic Respiratory Diseaseshttps://www.who.int/health-topics/chronic-respiratory-diseases#tab=tab_1

2. World Health Organization, Asthmahttps://www.who.int/news-room/fact-sheets/detail/asthma

3. Chronic Obstructive Pulmonary Diseasehttp://www.emro.who.int/health-topics/chronic-obstructive-pulmonary-disease-copd/index.html

4. Auscultation of the respiratory system

5. Respiratory Sounds

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3