Universal Testing Apparatus Implementing Various Repetitive Mechanical Deformations to Evaluate the Reliability of Flexible Electronic Devices

Author:

Kim Cheol,Kim Chung

Abstract

A requirement of flexible electronic devices is that they maintain their electrical performance during and after repetitive mechanical deformation. Accordingly, in this study, a universal test apparatus is developed for in-situ electrical conductivity measurements for flexible electrodes that are capable of applying various mechanical deformations such as bending, twisting, shearing, sliding, stretching, and complex modes consisting of two simultaneous deformations. A novel method of deforming the specimen in an arc to induce uniform bending stress in single and alternating directions is also proposed with a mathematically derived control method. As an example of the arc bending method, the changes in the resistance of the printed radio frequency identification (RFID) tag antennas were measured by applying repetitive inner bending, outer bending, and alternating inner-outer bending. After 5000 cycles, the increases in resistance of the specimens that were subjected to inner or outer bending only were under 30%; however, specimens that were subjected to alternating inner-outer bending showed an increase of 135% in resistance. It is critical that the reliability of flexible electronic devices under various mechanical deformations be determined before they can be commercialized. The proposed testing apparatus can readily provide various deformations that will be useful to inform the design of device shapes and structures to accommodate deformations during use.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3