Phytoplankton Community Structure and Its Relationship with Environmental Factors in Nanhai Lake

Author:

Gong DonghuiORCID,Guo Ziqing,Wei Wenxue,Bi Jie,Wang Zhizhong,Ji Xiang

Abstract

In order to determine the characteristics of phytoplankton community structure in Nanhai Lake in Baotou City and its relationship with environmental factors, water and phytoplankton samples were collected and composition and biomass were investigated at six sites in the spring, summer, and autumn of 2021. This article used correlation analysis and redundancy analysis (RDA) combined with the community turnover index (BC) to analyze the phytoplankton functional groups. The results showed that 7 phyla and 68 genera of phytoplankton were identified in the water body, of which Chlorophyta, Bacillariophyta, Cyanobacteria, Chrysophyta, Euglenophyta, Cryptophyta, and Pyrrophyta accounted for 34%, 32%, 16%, 6%, 4%, 4%, and 3%, respectively. The phytoplankton in the water body was classified into 23 functional groups, of which MP and D functional groups were the long−term dominant functional groups, indicating that the habitat is a turbid water body. The ecological state index (Q) value ranged from 1.94 to 3.13, with an average value of 2.74. The comprehensive nutritional index (TSIM(∑)) was between 49.32 and 52.11, with an average value of 51.72, indicating that Nanhai Lake was in a mesotrophic state. Correlation analysis and redundancy analysis (RDA) showed that multiple nutrients, transparency (SD), chemical oxygen demand (COD), water temperature (WT), and Chlorophyll a (Chl−a) were the main environmental factors affecting the biomass of dominant functional groups in the water body. The study showed the characteristics of the functional groups of algae in a precious urban lake in arid and semi−arid areas of China and their relationship with environmental factors (physical and chemical indicators, anions and cation ions, and heavy metal ions), and provided a scientific basis for its water quality evaluation.

Funder

National Natural Science Foundation of China

Natural Foundation of Inner Mongolia

Science and Technology Major Special of Ordos

Inner Mongolia Science and Technology Planning Project

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Reference50 articles.

1. Biophysical interactions in phytoplankton;Eleanor;Encycl. Inland Waters,2022

2. Phytoplankton morpho−functional trait dataset from French water−bodies;Christophe;Sci. Data,2021

3. Global phytoplankton decline over the past century;Daniel;Nature,2010

4. Phytoplankton responses to marine climate change—An introduction;Laura,2018

5. Frequent upwelling intrusions and rainfall events drive shifts in plankton community in a highly eutrophic estuary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3