Determination of the Location and Magnetic Moment of Ferromagnetic Objects Based on the Analysis of Magnetovision Measurements

Author:

Nowicki Michał,Szewczyk RomanORCID

Abstract

This article is concerned with the localization of ferromagnetic objects on the basis of magnetovision measurement analysis. In the presented case, the concept of localization is understood as the indication of the x, y, and z coordinates of the magnetic moment of the sought object. Magnetovision measurement provides a much simpler, two-dimensional localization of magnetic anomalies compared to existing active and passive mobile devices, largely based on operator knowledge and experience. In addition, the analysis of the obtained magnetovision measurement, by fusing data with a mathematical model, enables a quantitative assessment of the position of an object in space and the determination of the value and spatial orientation of its magnetic moment vector. The detection and localization method was verified using the certified magnetic moment standard. An additional novelty is the inclusion of the influence of the constant gradient of the external field in the model, which corresponds to disturbing the measurement by the influence of large, but distant, objects. The proposed three-dimensional magnetovision measurement method and its analysis enable the determination of the x, y, and z coordinates; the angular position; and the magnetic moment values of unknown magnetic dipoles in real conditions (effects of disturbances generated by other distant objects and background noise), thus precisely detecting and locating the ferromagnetic object.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference47 articles.

1. Modern Metal Detectors;Garret,1995

2. International Mine Action Standards. 2001 (Updated)https://www.mineactionstandards.org/

3. Database of Demining Accidents (DDAS): Software and Data;Smith,2001

4. Handbook of Magnetic Phenomena;Burke,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3