Influence of Self-Compaction on the Airflow Resistance of Aerated Wheat Bulks (Triticum aestivum L., cv. ‘Pionier’)

Author:

Ramaj IrisORCID,Schock SteffenORCID,Karaj ShkelqimORCID,Müller JoachimORCID

Abstract

Aeration is a key post-harvest grain processing operation that forces air through the pore volume of the grain bulk to establish favorable conditions to maintain grain quality and improve its storability. However, during storage, grain bulk experiences self-compaction due to its dead weight, which alters the bulk properties and impedes the uniform flow of air during aeration. Thus, this study focused on investigating the effect of self-compaction on the pressure drop ΔP of wheat bulk (Triticum aestivum L., cv. ‘Pionier’, X = 0.123 kg·kg−1 d.b.) accommodated in a laboratory-scale bin (Vb = 0.62 m3) at a coherent set of airflow velocities va. Pressure drop ΔP was measured at bulk depths Hb of 1.0, 2.0, 3.0 and 3.4 m and storage times t of 1, 65, 164 and 236 h. For the semi-empirical characterization of the relationship between ΔP and va, the model of Matthies and Petersen was used, which was proficient in describing the experimental data with decent accuracy (R2 = 0.990, RMSE = 68.67 Pa, MAPE = 12.50%). A tailored product factor k was employed for the specific grain bulk conditions. Results revealed a reduction of in-situ pore volume ε from 0.413 to 0.391 at bulk depths Hb of 1.0 to 3.4 m after 1 h storage time t and from 0.391 to 0.370 after 236 h storage time t, respectively. A disproportional increase of the pressure drop ΔP with bulk depth Hb and storage time t was observed, which was ascribed to the irreversible spatio-temporal behavior of self-compaction. The variation of pore volume ε was modeled and facilitated the development of a generalized model for predicting the relationship between ΔP and va. The relative importance of modeling parameters was evaluated by a sensitivity analysis. In conclusion, self-compaction has proven to have a significant effect on airflow resistance, therefore it should be considered in the analysis and modeling of cooling, aeration and low-temperature drying of in-store grain bulks.

Funder

German Federal Ministry for Economic Affairs and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3