Explainable Artificial Intelligence Enabled TeleOphthalmology for Diabetic Retinopathy Grading and Classification

Author:

Obayya Marwa,Nemri NadhemORCID,Nour Mohamed K.,Al Duhayyim Mesfer,Mohsen Heba,Rizwanullah Mohammed,Sarwar Zamani Abu,Motwakel Abdelwahed

Abstract

Recently, Telehealth connects patients to vital healthcare services via remote monitoring, wireless communications, videoconferencing, and electronic consults. By increasing access to specialists and physicians, telehealth assists in ensuring patients receive the proper care at the right time and right place. Teleophthalmology is a study of telemedicine that provides services for eye care using digital medical equipment and telecommunication technologies. Multimedia computing with Explainable Artificial Intelligence (XAI) for telehealth has the potential to revolutionize various aspects of our society, but several technical challenges should be resolved before this potential can be realized. Advances in artificial intelligence methods and tools reduce waste and wait times, provide service efficiency and better insights, and increase speed, the level of accuracy, and productivity in medicine and telehealth. Therefore, this study develops an XAI-enabled teleophthalmology for diabetic retinopathy grading and classification (XAITO-DRGC) model. The proposed XAITO-DRGC model utilizes OphthoAI IoMT headsets to enable remote monitoring of diabetic retinopathy (DR) disease. To accomplish this, the XAITO-DRGC model applies median filtering (MF) and contrast enhancement as a pre-processing step. In addition, the XAITO-DRGC model applies U-Net-based image segmentation and SqueezeNet-based feature extractor. Moreover, Archimedes optimization algorithm (AOA) with a bidirectional gated recurrent convolutional unit (BGRCU) is exploited for DR detection and classification. The experimental validation of the XAITO-DRGC method can be tested using a benchmark dataset and the outcomes are assessed under distinct prospects. Extensive comparison studies stated the enhancements of the XAITO-DRGC model over recent approaches.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3