Adaptive Trust-Based Framework for Securing and Reducing Cost in Low-Cost 6LoWPAN Wireless Sensor Networks

Author:

Ahmad Rami,Wazirali RaniyahORCID,Abu-Ain TarikORCID,Almohamad Tarik Adnan

Abstract

Wireless Sensor Networks (WSNs) are the core of the Internet of Things (IoT) technology, as they will be used in various applications in the near future. The issue of security and power consumption is still one of the most important challenges facing this type of network. 6LoWPAN protocol was developed to meet these challenges in networks with limited power and resources. The 6LoWPAN uses a hierarchical topology and the traditional method of encryption and key management, keeping power consumption levels high. Therefore, in this paper, a technique has been developed that helps in balancing security and energy consumption by exploiting the Trust technique between low-cost WSN nodes called Trust-Cluster Head (Trust-CH). Trust between nodes is built by monitoring the behavior of packet transmission, the number of repetitions and the level of security. The Trust-CH model provides a dynamic multi-level encryption system that depends on the level of Trust between WSN nodes. It also proposes a dynamic clustering system based on the absolute-trust level in the mobile node environment to minimize power consumption. Along with a set of performance metrics (i.e., power consumption and network lifetime), the Cooja simulator was used to evaluate the Trust-CH model. The results were compared to a static symmetric encryption model together with various models from previous studies. It has been proven that the proposed model increases the network lifetime by 40% compared to previous studies, as well as saves as much as 28% power consumption in the case of using a static encryption model. While maintaining the proposed model’s resistance to many malicious attacks on the network.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. A Survey of Internet of Things (IoT) in Education: Opportunities and Challenges

2. A New Digital Watermarking Method for Data Integrity Protection in the Perception Layer of IoT

3. Development of in-shoe wearable pressure sensor using an Android application

4. A survey of open body sensor networks: Applications and challenges

5. Precedenceresearch Home Healthcare Market Size, Share & Growth Analysis Report by Equipment Type (Therapeutic, Diagnostic), by Service (Skilled Home Healthcare Services, Unskilled Home Healthcare Services)-Global Industry Analysis, Trends, Segment Forecasts, Regional Outl https://www.precedenceresearch.com/home-healthcare-market

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3