Generation of Synthetic Compressional Wave Velocity Based on Deep Learning: A Case Study of Ulleung Basin Gas Hydrate in the Republic of Korea

Author:

Ji MinsooORCID,Kwon SeoyoonORCID,Kim MinORCID,Kim SungilORCID,Min BaehyunORCID

Abstract

This study proposes a deep-learning-based model to generate synthetic compressional wave velocity (Vp) from well-logging data with application to the Ulleung Basin Gas Hydrate (UBGH) in the East Sea, Republic of Korea. Because a bottom-simulating reflector (BSR) is a key indicator to define the presence of gas hydrate, this study generates the Vp for identifying the BSR by detecting the morphology of the hydrate in terms of the change in acoustic velocity. Conventional easy-to-acquire logging parameters, such as gamma-ray, neutron porosity, bulk density, and photoelectric absorption, were selected as model inputs based on a sensitivity analysis. Long short-term memory (LSTM) and an artificial neural network (ANN) were used to design an efficient learning-based predictive model with sensitivity analysis for hyperparameters. The LSTM model outperforms the ANN model by preserving the geological sequence of the well-logging data. Ten-fold cross-validation was conducted to verify the consistency of the LSTM model and yielded satisfactory results, with an average coefficient of determination greater than 0.8. These numerical results imply that generating synthetic well-logging via deep learning can accurately estimate missing well-logging data, contributing to the reservoir characterization of gas-hydrate-bearing sediments.

Funder

Korea Institute of Geoscience and Mineral Resources

Korea Electric Power Corporation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3