An Efficient Deep Learning Approach for Colon Cancer Detection

Author:

Sakr Ahmed S.,Soliman Naglaa F.ORCID,Al-Gaashani Mehdhar S.ORCID,Pławiak PawełORCID,Ateya Abdelhamied A.ORCID,Hammad MohamedORCID

Abstract

Colon cancer is the second most common cause of cancer death in women and the third most common cause of cancer death in men. Therefore, early detection of this cancer can lead to lower infection and death rates. In this research, we propose a new lightweight deep learning approach based on a Convolutional Neural Network (CNN) for efficient colon cancer detection. In our method, the input histopathological images are normalized before feeding them into our CNN model, and then colon cancer detection is performed. The efficiency of the proposed system is analyzed with publicly available histopathological images database and compared with the state-of-the-art existing methods for colon cancer detection. The result analysis demonstrates that the proposed deep model for colon cancer detection provides a higher accuracy of 99.50%, which is considered the best accuracy compared with the majority of other deep learning approaches. Because of this high result, the proposed approach is computationally efficient.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference24 articles.

1. Pathology in Colorectal Malignancy;Makhdoomi,2020

2. Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer

3. Protein degradation in the large intestine: Relevance to colorectal cancer;Hughes;Curr. Issues Intest. Microbiol.,2000

4. Colorectal polyps, diet, alcohol, and family history of colorectal cancer: A case‐control study

5. Disease type detection in lung and colon cancer images using the complement approach of inefficient sets

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3