Abstract
In the present experimental work, the energy and exergy for single slope passive solar still with different basin water depths are experimentally investigated under the Baghdad climate condition. The analysis is performed using the governing equations formulated according to the first and second laws of thermodynamics. Compared to solar still with 1 cm water depth, the obtained results indicated that raising the water depth to 2 and 3 cm caused an appreciable drop in water basin temperature, and high levels of water basin reduction were about 4% and 9%, respectively, from 8:00 a.m. to 14:00 p.m., which significantly affects heat and mass transfer and ultimately hinders further water productivity. The maximum evaporation and convection heat transfer coefficients are found (32 W/m2·k) and (2.62 W/m2·k), respectively, while the maximum productivity of solar still is found to be 1468.84 mL/m2 with 1 cm water depth. Conversely, stills with 2 and 3 cm water depth, exhibit an increment of the daily exergy efficiency after 14:00 p.m., this increment was the most for the still with 3 cm water depth. Therefore, we have concluded that the still with 1 cm of water depth attained the highest water productivity, while the still with 3 cm of water depth attained the best exergy efficiency with no additional costs.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献