Effect of Water Content Variation on the Tensile Characteristic of Clayey Loess in Ili Valley, China

Author:

Zheng Penglin,Wang Jinge,Wu Zihao,Huang Wei,Li Changdong,Liu QingbingORCID

Abstract

The mechanical behavior of loess is highly predicated on variation in its moisture content. While the impacts of the water content on the shearing behavior and collapsibility of loess have been extensively studied, its effect on tensile characteristics has received relatively little attention. In this study, a series of tensile tests were conducted on remolded specimens of a clayey loess that were collected from Ili Valley in China. Two sets of loess specimens with varying water contents were prepared separately using wetting and drying methods. The influence of the water content on the tensile stress–strain response, failure mode and tensile strength was investigated by combining the tensile test results and particle image velocimetry (PIV) analysis. On this basis, a nuclear magnetic resonance (NMR) test and scanning electron microscopy (SEM) observations were implemented in order to assist with the interpretation of the underlying mechanism. The test results indicate that the tensile failure process and the variation of tensile strength with varying water contents differ for specimens that are prepared with wetting and drying methods; a finding which arises from the differences in the soil microstructure, clay–water interaction and the distribution of capillary and adsorbed water. This research has shown that the tensile strength of clayey loess is essentially dominated by the clay’s hydration/cementation and the development of capillary and adsorption suction as well as the microstructural evolution that occurs with the change in the water content. Based on the experimental observations, a conceptual model is proposed in order to interpret the effect of water content on loess’ tensile behavior.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3