FCNN-SE: An Intrusion Detection Model Based on a Fusion CNN and Stacked Ensemble

Author:

Chen Chen,Song YafeiORCID,Yue Shaohua,Xu Xiaodong,Zhou Lihua,Lv Qibin,Yang Lintao

Abstract

As a security defense technique to protect networks from attacks, a network intrusion detection model plays a crucial role in the security of computer systems and networks. Aiming at the shortcomings of a complex feature extraction process and insufficient information extraction of the existing intrusion detection models, an intrusion detection model named the FCNN-SE, which uses the fusion convolutional neural network (FCNN) for feature extraction and stacked ensemble (SE) for classification, is proposed in this paper. The proposed model mainly includes two parts, feature extraction and feature classification. Multi-dimensional features of traffic data are first extracted using convolutional neural networks of different dimensions and then fused into a network traffic dataset. The heterogeneous base learners are combined and used as a classifier, and the obtained network traffic dataset is fed to the classifier for final classification. The comprehensive performance of the proposed model is verified through experiments, and experimental results are evaluated using a comprehensive performance evaluation method based on the radar chart method. The comparison results on the NSL-KDD dataset show that the proposed FCNN-SE has the highest overall performance among all compared models, and a more balanced performance than the other models.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ALRN-RCS: Advanced Approach to Network Intrusion Detection Using Attention Long-Term Recurrent Networks and Chaotic Optimization;IETE Journal of Research;2024-07-22

2. Deep Attention Learning for Extreme Minority Class Intrusion Detection in Network Traffic;2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS);2024-04-18

3. Application of GA-WELM Model Based on Stratified Cross-Validation in Intrusion Detection;Symmetry;2023-09-07

4. Intrusion detection model based on GA-BP;International Conference on Computer Network Security and Software Engineering (CNSSE 2023);2023-06-26

5. Intrusion Detection Model Based on Improved Transformer;Applied Sciences;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3