Perlite as a Biocarrier for Augmentation of Biogas-Producing Reactors from Olive (Olea europaea) Waste

Author:

Ivankovic Tomislav,Kontek Mislav,Mihalic Valentino,Ressler AntoniaORCID,Jurisic VanjaORCID

Abstract

Biogas is mainly produced by anaerobic digestion (AD), and in the EU, the widely used substrate for AD is maize silage. Due to a rise in silage prices, the intention is to gradually replace maize with lignocellulose biomass. In the Mediterranean area, the olive industry produces large amounts of lignocellulose wastes, namely olive cake and pruned biomass. Still, due to its high lignin content, it is resistant to biodegradation. This issue could be resolved by adding targeted microorganisms that enhance the substrate’s primary degradation, and the cells’ attachment to suitable biocarriers could boost the augmentation process. A microbial consortium customized for biodegradation of olive cake and pruned biomass was isolated, propagated and immobilized onto the biocarrier, perlite, a naturally occurring aluminosilicate material. The perlite proved to be a suitable biocarrier with numbers of immobilized bacteria as high as 2.1 ± 0.9 × 1011 and 3.4 ± 0.6 × 1010 CFU g−1 when preparation was performed in aerobic and anaerobic conditions, respectively. Bioaugmentation of AD reactors significantly increased the biogas yield, but only if olive cake, not the pruned biomass, was used as a substrate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. European Biogas Association Statistical Report: 2019 European Overview,2022

2. Biogas policies and production development in Europe: a comparative analysis of eight countries

3. Current state of biogas production in Croatia

4. Communication from the Commission to the European Parliament, The European Council, the Council, the European Economic and Social Committee and the Committee of the Regions,2022

5. Helianthus salicifolius as a New Biomass Source for Biogas Production

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3