Mechanical and Thermal Properties of Aluminum Matrix Composites Reinforced by In Situ Al2O3 Nanoparticles Fabricated via Direct Chemical Reaction in Molten Salts

Author:

Yolshina Liudmila A.ORCID,Kvashnichev Aleksander G.,Vichuzhanin Dmitrii I.ORCID,Smirnova Evgeniya O.

Abstract

The development of novel methods for industrial production of metal-matrix composites with improved properties is extremely important. An aluminum matrix reinforced by “in situ” α-Al2O3 nanoparticles was fabricated via direct chemical reaction between molten aluminum and rutile TiO2 nanopowder under the layer of molten salts at 700–800 °C in air atmosphere. Morphology, size, and distribution of the in situ particles, as well as the microstructure and mechanical properties of the composites were investigated by XRD, SEM, Raman spectra, and hardness and tensile tests. Synthesized aluminum–alumina composites with Al2O3 concentration up to 19 wt.% had a characteristic metallic luster, their surfaces were smooth without any cracks and porosity. The obtained results indicate that the “in situ” particles were mainly cube-shaped on the nanometer scale and uniform matrix distribution. The concentration of Al2O3 nanoparticles depended on the exposure time and initial precursor concentration, rather than on the synthesis temperature. The influence of the structure of the studied materials on their ultimate strength, yield strength, and plasticity under static loads was established. It is shown that under static uniaxial tension, the cast aluminum composites containing aluminum oxide nanoparticles demonstrated significantly increased tensile strength, yield strength, and ductility. The microhardness and tensile strength of the composite material were by 20–30% higher than those of the metallic aluminum. The related elongation increased three times after the addition of nano-α Al2O3 into the aluminum matrix. Composite materials of the Al-Al2O3 system could be easily rolled into thin and ductile foils and wires. They could be re-melted for the repeated application.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3