Synthesis of an Aluminum Alloy Metal Matrix Composite Using Powder Metallurgy: Role of Sintering Parameters

Author:

Nayak Kanhu C.,Rane Kedarnath K.ORCID,Date Prashant P.,Srivatsan T. S.ORCID

Abstract

Powder metallurgy-based metal matrix composites (MMCs) are widely chosen and used for the development of components in the fields spanning aerospace, automotive and even electronic components. Engineered MMCs are known to offer a high strength-to-weight (σ/ρ) ratio. In this research study, we synthesized cylindrical sintered samples of a ceramic particle-reinforced aluminum metal matrix using the technique of powder metallurgy. The samples for the purpose of testing, examination and analysis were made by mixing aluminum powder with powders of silicon carbide and aluminum oxide or alumina. Four varieties of aluminum composite were synthesized for a different volume percent of the ceramic particle reinforcement. The hybrid composite contained 2 vol.% and 7 vol.% of silicon carbide and 3 vol.% and 8 vol.% of alumina with aluminum as the chosen metal matrix. Homogeneous mixtures of the chosen powders were prepared using conventional ball milling. The homogeneous powder mixture was then cold compacted and subsequently sintered in a tubular furnace in an atmosphere of argon gas. Five different sintering conditions (combinations of temperature and sintering time) were chosen for the purpose of this study. The density and hardness of each sintered specimen were carefully evaluated. Cold compression tests were carried out for the purpose of determining the compressive strength of the engineered MMC. The sintered density and hardness of the aluminum MMCs varied with the addition of ceramic particle reinforcements. An increase in the volume fraction of the alumina particles to the Al/SiC mixture reduced the density, hardness and compressive strength. The sintering condition was optimized for the aluminum MMCs based on the hardness, densification parameter and cold compressive strength. The proposed powder metallurgy-based route for the fabrication of the aluminum matrix composite revealed a noticeable improvement in the physical and mechanical properties when compared one-on-one with commercially pure aluminum.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3