Machine Learning Techniques Applied to Identify the Two-Phase Flow Pattern in Porous Media Based on Signal Analysis

Author:

Li Xiangyu,Li LiangxingORCID,Wang Wenjie,Zhao Haoxiang,Zhao Jiayuan

Abstract

The development of flow pattern identification technology for gas–liquid two-phase flow in porous media is of great significance to engineering research and production. In this paper, a high accuracy identification method for two-phase flow pattern in porous media is proposed with Machine learning techniques. The gas–liquid two-phase flow patterns and corresponding differential pressure signals in porous beds with particle diameters of 1.5 mm, 3 mm, and 6 mm are obtained through visual experiments. Three time domain characteristic parameters (Mean, Standard deviation, and Range) are calculated by a statistical method, while the EMD energy spectrum of the signal is obtained by empirical mode decomposition. Based on these parameters, machine learning technology, including support vector machine (SVM) and BP neural network, are employed to identify the flow pattern. Four flow pattern identification models are trained based on SVM and BP neural network, with accuracies of 94.77%, 93.4%, 96.08%, and 91.5%. Furthermore, the three models with good performance are integrated by integrated learning technology. An integrated identification model of gas–liquid two-phase flow pattern in porous media with an overall accuracy of 98.04% is finally obtained.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3