Electrodegradation of Acid Mixture Dye through the Employment Electrooxidation and Lemnoideae in Na2SO4 Synthetic Wastewater

Author:

Bęś AgnieszkaORCID,Sikorski ŁukaszORCID,Mikołajczyk TomaszORCID,Kuczyński MateuszORCID,Łuba MateuszORCID,Pierożyński Bogusław,Jasiecka-Mikołajczyk AgnieszkaORCID

Abstract

In this study, we report on the effectiveness of electrochemical and biological wastewater treatment for artificially prepared industrial wastewater, comprising small amounts of technologically important dyes, namely Acid Mixture composed of Acid Violet 90 (AV90) and Acid Red 357 (AR357) in Na2SO4 (ESS—electrolyte supporting solution), as well as their impact on the environment, using Lemna minor as a bioindicator. Our study revealed that among the tested dyes, the raw ones (AM in ESS+OM) and those subjected to electrooxidation with the use of an iron anode and a copper cathode [AMFe/Cuox in ESS+OM (OECD medium is a medium recommended by the Organization for Economic Co-operation and Development for Lemna sp. Growth Inhibition Test)] were the most phytotoxic for L. minor. No phytotoxicity was detected for the tested plants in solution after electrooxidation with graphite anode and cathode (AMCox in ESS+OM). Quantitative identification of acid mixture removal was carried out by supplementary UPLC/MS-MS (Ultra-Performance Liquid Chromatography/tandem Mass Spectrometry) and UV-VIS (UltraViolet-Visible spectroscopy) instrumental analysis. The final removal after electrochemical and biological treatment of AV90 and AR357 dye components was 98 and over 99%, respectively. The results suggest that it may be a suitable replacement/addition for the generally used wastewater treatment methods.

Funder

University of Warmia and Mazury in Olsztyn

Minister of Education and Science

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3